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Dynamic light scattering measurement data of DNA topoisomers are compared 
with two different computer models: a Monte Carlo model and a Brownian dynamics 
model. First results on the kinetics of formation of a superhelix and on the influence 
of curved sequences on the dynamics of superhelical DNA are reported. 

I. Introduction 

DNA supercoiling is important for the structural organization of DNA in the cell. 
Many biological processes require an interaction of DNA sequences which are several 
hundreds of base pairs apart. Winding the double helix into a higher-order "superhelix" 
can bring such sequences close enough together so that they can interact through space, 
a protein molecule being the mediator (e.g. the binding of  two lac operator sequences 
by the same repressor molecule [1]). DNA does not have to be circular to form a 
superhelix; it is sufficient that the two ends of  a piece of  DNA cannot twist with respect 
to each other, e.g. if  they are bound to structural proteins in the cell. 

The conformation of  a superhelix is determined by its linking number difference 
ALk, which is connected to the deviation of  the total twist from equilibrium ATw 
and the writhe of  Wr of the helix axis through the relationship [2] 

ALk = Wr + ATw. (1) 

The superhelical density a, used later in the text, is the linking number  difference 
per double-helical tum at equilibrium, or for a DNA of  Nb base pairs (bp) and a 
helix repeat of  10.5 bp/tum 

a =  ALk x 10.5/Nb. (2) 

Typically, a =  -0 .05  to -0 .07  for native superhelical DNA. 
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The repartition of the elastic energy into twist and writhe depends on mechanical 
properties of the DNA filament, such as its bending and twisting rigidity, its diameter, 
and the local equilibrium of the DNA helix axis, which may be straight or curved. 
For a consistent picture of the function of superhelical DNA in the cell, it is 
important to know how the fundamental physical properties of DNA determine its 
structure and dynamics and therefore the thermodynamics and kinetics of intramolecular 
interactions in DNA. 

Data on the solution structure and dynamics of DNA have been collected 
with a variety of techniques such as fluorescence depolarization anisotropy decay, 
electric dichroism and birefringence, dynamic light scattering, and others (for a 
review, see ref. [3]). Our own work has concentrated on studies of the structure and 
dynamics of superhelical DNA using dynamic light scattering (DLS) [4-7]. Presently, 
the only way to connect DLS and many other dynamical measurements on DNA 
to fundamental physical parameters of the molecule, including its sequence-specific 
properties, is through numerical simulations. 

Physical studies of superhelical DNA require sufficient quantities of samples 
of defined superhelicity. Up to now, only rather broad distributions of topoisomers 
could be produced by selective relaxation with topoisomerase in the presence of 
intercalators, a serious experimental drawback which we tried to overcome by 
developing a method for the separation of DNA topoisomers on reversed phase 
chromatography [8, 9]. Using this technique, we can produce topoisomer distributions 
that contain only two to three major components. 

DLS measurements on these topoisomers yield the translational diffusion 
coefficient O t of the DNA and information on its internal motions [4]. We compare 
our data with predictions made by two different computer models: a Monte Carlo 
model developed by Vologodskii, Klein and co-workers [10, 1 1] for predicting the 
average solution structure of the molecule, and a Brownian dynamics model developed 
in our group for predicting the dynamics of the DNA. Both models are based only 
on physical parameters of the DNA known previously from other techniques (bending 
and torsional rigidity, hydrodynamic diameter, excluded volume diameter). We 
report here first results on the kinetics of formation of a superhelix, and on the 
influence of curved sequences on the dynamics of superhelical DNA. 

2. Methods 

2.1. PREPARATION OF TOPOISOMERS 

For physical studies on superhelical DNA, one needs sufficient material of 
well-defined superhelical density. In most previous studies, superhelical DNA was 
relaxed with topoisomerase I in the presence of intercalators, resulting in a 
population of topoisomers with defined negative superhelical density [27]. We have 
recently developed a procedure for separating further such topoisomer distributions 
on HPLC [8,9]. With this method, we obtain very narrow topoisomer distributions 
from pUC18 plasmid DNA (2687 base pairs) with only two to three components. 
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2.2. DLS MEASUREMENTS 

For determining hydrodynamic properties of DNA as a function of superhelix 
density, we used dynamic light scattering (DLS). DLS measures the Brownian 
motion of  molecules in solution by analyzing the fluctuations of scattered laser light 
via the autocorrelation function (ACF) of  the scattered light intensity [12]. We have 
shown in previous work that the ACF of the scattered light from solutions of 
superhelical and linear plasmid DNAs can be decomposed into two principal 
components: a slow decay corresponding to the translational diffusion of the center 
of mass of  the molecule, and a fast one corresponding to the internal diffusion of  
subsegments of the DNA with respect to each other [4]. 

The translational diffusion coeflcient D t of a molecule can be interpreted in 
a very straightforward way as a hydrodynamic radius R h 

R h = kBT[Dt. 

Several models exist for computing the diffusion coefficients of models composed 
of spherical beads [13]. In the following, we shall discuss the dependence of D t o n  

superhelical density o" and compare the experimental values with those obtained 
from a Monte Carlo model. 

2.3. MONTE CARLO SIMULATIONS 

The Monte Carlo model used in the calculation was that described by 
Vologodskii et al. [11 ], modified to accomodate sequence-depending bending (Klenin 
and Langowski, in preparation). 

pUC18 has a total length of  2687 base pairs, or a contour length of  
2687 x 0.34 = 914 nm. The chain actually modelled consisted of 96 segments of 
9.54 nm each, each segment being further subdivided into three spherical beads of  
3.184 nm diameter. This choice of bead diameter has been shown to reproduce the 
hydrodynamic properties of  DNA [14]. The slight deviation of the total chain 
contour length (2694 instead of 2687 base pairs, or 0.26%) is due to the discrete 
nature of the model and considered to be negligible. The Kuhn length of DNA is 
known to be 100 nm for ionic strengths >0.01 M and was set to this value; the 
torsional rigidity ct was assumed to be either 4 × 10 -12 dyn cm, which is a value 
typically measured for linear DNA in fluorescence polarization decay (FPA) 
experiments [15], or a =  8.8 x 10 -12 dyn cm, which was obtained from cyclization 
data of  small DNA fragments by Horowitz and Wang [16]. The "effective helix 
diameter", taking into account excluded volume, was set to 0.02 Kuhn lengths, or 
2 nm. The diffusion coefficients of  the chain configurations were computed using 
the algorithm described by de Hahn et al. [13], which we found to predict very 
accurately the diffusion coefficient of DNA bead-chain models [14]. 
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All programs were written in FORTRAN 77, and the simulations were run on 
the EMBL Outstation's Stardent 3000 with two P3 processors, using the compiler 's  
vectorization option. 

2.4. BROWNIAN DYNAMICS SIMULATIONS 

Some applications of Brownian dynamics (BD) to studies of DNA internal 
motions have already been described, notably through the work of Allison and co- 
workers [17-20].  Those simulations have been confined to linear DNA chains. 
Inclusion of the torsional constraints and simulations of  superhelical DNAs was 
possible with the algorithm described there, but very expensive in CPU time. Thus, 
we recently developed a Brownian dynamics model based on a second-order algorithm 
described by Iniesta and Garcia de la Torre [21]. This method speeds-up the computation 
by a factor of three to five on linear DNAs. 

We have now included the torsional constraints and torsional-bending coupling 
into the model. The full theory will be described in a forthcoming paper; here, we 
outline only the most important points. 

A covalently closed DNA molecule is modelled as a string of N beads of  
diameter d = 2or b and spaced by ls. N is chosen such that the DNA contour length 
Lc = Nls. In our preceding work [14], the beads formed a contiguous chain with 
ls = 2Orb = 3.184 nm, or 9.3 base pairs. This value was proposed by Hagerman and 
Zimm [22] to reproduce the hydrodynamic diameter of a B-DNA double helix. In 
the work described here, we also use a non-contiguous model for the simulation of  
longer chains. 

Each bead, representing a subcomponent of the chain, has a body-fixed coordinate 
(bfc) system associated with it. We define ~j,j+l = (aj, j+l, flj, j÷l ,  "~,j÷l) as the 
Eulerian angle that orients the j + 1 subcomponent in the bfc system of the j 
subcomponent. The center of bead j + 1 is always placed on the z-axis of  the bfc 
system of  bead j. Since the molecule is a closed circle, there exists no preference 
for choosing the first and last Nth bead, thus the index j + N will be equal to the 
index j throughout the following calculations; e.g. ~N,N+I = ~N,I.  

The potential energy of  the molecule is composed of four contributions: 

U t°t = U b + U s + U t + U ex. (3) 

U b, U s, U t and U ex denote the bending, stretching, torsional and excluded volume 
potentials: 

U b -  kB T N _ " ~  ~f12, (4a) 
j = l  

U s kB T N /s) 2, 
= 2; ( jb j l -  

j=l  
(4b) 
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U t kB T N = ~ 2 ( a j  4" ~,j)2, 
j=l 

U ex = 4kBT e ,~  - 
i<j  

I /6] f (I) cr (I)(x)= 0, x < l ,  

(4c) 

(4d) 

where kBT/~ 2, kBT/62 and kBT/~ 2 are the bending, stretching and torsional force 
constants, by = rj+l - rj, and bi,j = I r i -  rjl. The values of ~ and 5 are chosen as in 
ref. [14], ~ corresponds to a torsional rigidity a =  8 × 10 -12 dyn cm, and e =  10 -6. 
cr in eq. (4d) is an excluded volume parameter; for (~/bi, j = 3, Uex = kBT. 

The Langevin equations for the translational and rotational Brownian mot ion  
of  a molecule  composed of  N beads of equal mass m in an incompressible cont inuum 
solvent can be expressed in convenient  form for numerical  integration through the 
second-order  approximation discussed by Iniesta and Garcia de la Torre [21 ]. In this 
formalism, the posit ion of  the ith bead after a simulation t ime step St is computed  
as follows: 

r/(t + St) = r/(t) + ~ N ~.~ [Dij(t + 5t)Fj(t + St) + Dij(t)Fj(t)]St + Fli(t) (5) 
2kBT j=l 

i = 1  . . . . .  N, 

where Dij(t) is the R o t n e - P r a g e r  diffusion tensor [23] describing the hydrodynamic  
interaction between beads i and j. The viscosity of the medium was assumed to be 
that of  water. F/(t) is the force acting on bead j,  and the random displacements Fli(t ) 
obey the relation 

(Fli(t) : FIj(t)) = [Dij(t + St) + Dij(t)] St; (Fli(t)) = 0 

i , j = l  . . . . .  N. 

(6) 

The torsional displacement of  the ith bead after a t ime step 5t  is 

• i(t + St) = ~i( t )  + ~ DR[T/(t + St) + T/(t)] 5t + Si(t), (7) 
2kBT 

where T~(t) is the torque acting on the ith bfc system, D R the rotational diffusion 
coefficient of  the ith subcomponent ,  and the random rotation $i has the fol lowing 
statistical properties: 

Si(t) = Z( 2DR 5t)°'5; (Z) = 0.0; (Z z) = 1.0. (8) 

In the simulations, we used D R = 7.03 x 107 s -1, which is the value for a cyl inder 
of  2.4 nm diameter and 3.184 nm length at 293 K in water. 
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The forces Fi and the torques T/ are computed from the derivatives of the 
respective potentials, 

E = -  = Eb + F? +E '  + C L  

T / = -  ~ U  t. 
(9) 

More details about the calculations will be published in a forthcoming paper [26]. 
For the moment, we stress that for a correct treatment of  the topological constraints 
of a closed circular DNA, it is necessary to include the bending-torsional  coupling 
force F/t = - b U t / b r i  in the simulations. 

The linking number difference ALk is included in the simulation by taking 
as a starting point a planar circular molecule with each set of Eulerian angles Oj 
defined by the relations 

aj = - 2 ~ ( j -  1)ALk/N, 

f l j=  2~j]N, 

~. = 2n jALk /N .  

(10) 

In this configuration, all the initial torsional stress is contained in twisting 
and none in writhing. The torsion angle between beads N and 1 is automatically 
taken mod 2re by confining all Eulerian angles to the interval [ - n ,  ~] at each 
simulation step. For the ALk values used in our computations, all aj and ~. are 
always small enough so that this procedure does not lead to artifacts. In order to 
check the consistency of the simulation, we verified that the relationship (1) was 
always fulfilled by the total twist and writhe of the chain. Small deviations from (1) 
- not exceeding 1% on the average - were probably due to the fact that (4c) holds 
strictly only in the limit of  zero bending angle, and to the approximation of  a 
smoothly bent chain by a finite number of segments. 

3. Results 

3.1. DLS MEASUREMENTS AND MONTE CARLO SIMULATIONS 

The translational diffusion coefficient D t increases with ALk, reflecting the 
compaction of the DNA molecule as its configuration changes from relaxed circle 
to superhelix (fig. 1). Dt approaches a plateau value of  5 .0× 10-12mEs -1 for 
ALk _ - 10 (tr< -0.04). Co-plotted in fig. 1 are some data from earlier measurements 
on pUC8 (2717 bp), which has almost the same size as pUC18 and shows very 
similar behavior. 
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Fig. 1. Translational diffusion coefficient of topoisorners of pUC8 
(2686 bp) as a function of the number of negative superhelical turns 
(ALk). (11) experimental data; (A) Monte Carlo simulation with a 
torsional constant ot = 4 x 10 -12 dyn crn; (O) with ct = 8.8 x 10-12 dyn cm. 

The agreement between the experimental data and the Monte Carlo simulations 
is very good. Two choices exist for the torsional rigidity: a =  4 x 10-12dyn cm, 
which is a value typically measured for linear DNA in fluorescence polarization 
decay (FPA) experiments [15], and a =  8.8 × 10 -12 dyn cm, which is obtained from 
cyclization data of  small DNA fragments by Horowitz and Wang [16]. The agreement 
is slightly better for the low value of  ct. 

3.2. MONTE CARLO SIMULATIONS OF THE INFLUENCE OF LOCAL CURVATURE ON 
SUPERHELICAL STRUCTURE 

There is evidence that curved DNA sequences localize in the end loops of  
superhelical DNA [24]. To understand the consequences of  this phenomenon,  we 
have calculated the effect of  permanent bends with the Monte Carlo model.  The 
DNA chain modelled was the same as in the previous calculations, with a permanent 
120 ° bend approximated by two 60 ° bends between segments 47, 48 and 49. 

Figure 2 shows the formation probability of  a segment being at the apex of  
an end loop as a function of  chain position. The control with no bends shows no 
preferential loop formation, as expected. For the model  chain with a bend, we find 
a maximum of  the loop formation probability exactly at the position of  the permanent 
bend. Furthermore, the loop formation probability over a range o f  approximately 
400 base pairs to both sides of  the permanent bend is significantly reduced with 
respect to the control. At a distance of  approximately 800 bp from the bend, a 
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Fig. 2. End loop formation probability versus chain position for 
a 96-segment model of pUC18 with and without permanent bends. 
( - )  60 ° bends between segments 47, 48 and 49; ( - - )  no bends. 

secondary maximum of  the loop formation appears, which may be due to an increase 
in the number of branched structures; this hypothesis is presently being tested. 

The consequence of this finding is that a permanent bend arranges the DNA 
sequences to both sides of  it in a fixed fashion, thus defining possible DNA-DNA 
interactions. We have some preliminary experimental evidence that DNAs with permanent 
bends have a lower degree of  internal motion than those without bends [25]. 

3.3. B R O W N I A N  DYNAMICS SIMULATIONS 

The DNA molecule is modelled as a contiguous chain of 30 beads of diameter 
d = 3.184 nm, as explained in section 2. The total length of the chain thus corresponded 
to 281 base pairs. The motions of circular chains of linking number difference 
ALk = - 2  and - 5 ,  corresponding to superhelical densities of  rr= -0 .07  and t r= 
-0.19 were simulated for approximately 10 Its, starting from a flat circular configuration. 

Figure 3 shows some typical configurations of  the two DNA chains during 
the course of  the simulation. Since the bending tension in these small circles is 
much higher than in typical superhelical plasmid DNAs of several thousand bp 
length, we had to employ much higher superhelix densities than the t r= -0 .05  to 
-0 .07 found in natural DNAs in order to form superhelical turns. The circle with 
ALk = - 2  starts to form a single superhelical turn only at the very end of  the 
simulation, while for ALk = - 5  the formation of  the first turn takes about 1 lXS. 
After two superhelical turns have formed, the amplitude of  the shape fluctuations 
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Fig. 3. Brownian dynamics calculation of a 281 bp DNA circle simulated 
by 30 spherical beads. (a) Starting configuration, (b) ALk = - 2  after 
10 p.s, (c) ALk = - 5  after 0.1 txs, (d) ALk = - 5  after 10 Its. 
ALk = linking number difference (number of superhelical turns). 

of the ALk = - 5  circle decreases visibly; this is in agreement with our experimental 
finding that the internal motion amplitude of superhelical DNA is much smaller 
than that of linear DNA [5]. 

We note that the formation of the interwound superhelix of the ALk = - 5  
circle proceeds through a transient toroidal state which is formed after approximately 
0.1 ~ts (fig. 3c). A similar mechanism has now been observed in simulations of 
longer plasmid DNAs (data not shown). 
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4. Conclusion 

On extremely purified samples of DNA topoisomers, we could measure the 
translational diffusion coefficient of superhelical DNA as a function of its linking 
number and compare the experimental data with predicted values from Monte Carlo 
simulations. The good agreement between theory and experiment confirms the 
validity of the Monte Carlo model by Vologodskii et al. [11] for structural 
predictions. 

The Monte Carlo model furthermore predicts that permanently curved DNA 
sequences localize with preference in the end !oops of interwound superhelices, a 
fact which is also seen experimentally [24]. The consequence of this localization 
is that the mobility of DNA segments in the neighborhood of the permanent bend 
is severely restricted; over a distance of approximately 400 base pairs to both sides 
of the permanent bend, the loop formation probability is strongly reduced. This 
means that the relative orientation of DNA segments to both sides of the permanent 
bend should be non-random; sequences placed symmetrically with respect to the 
bend will have a higher probability of interaction than other sequences. First 
experimental evidence for this prediction comes from DLS measurements, which 
show a reduced overall internal mobility of superhelical DNA when a permanent 
bend is present in the molecule. 

Brownian dynamics (BD) simulations can be used to compute the kinetics of 
superhelix formation and interactions in superhelical DNA. With a new BD model 
based on a second-order algorithm [14, 19], and with the inclusion of torsional 
potentials and torsional-bending coupling, we were able for the first time to 
simulate the dynamics of a 281 base pair  DNA circle for a total time of 
10 Its. The results reported here will be extended to predict the dynamics for longer 
supercoils, which are also accessible experimentally, and to study the effect of 
permanent bends on the dynamics. First data on 1100 base pair circles are now 
available [26]. 

Note added in proof  

After submission of this paper, another group has presented a model of the 
dynamics of DNA supercoiling that is based on a B-Spline representation of the 
space curve of the DNA double helix [28,29]. Their model predicts the main 
structural features of the final equilibrium state, and gives qualitative information 
about the kinetics of supercoiling; however, since no viscous damping or hydrodynamic 
interaction have been included in that work, the kinetics cannot be calculated on 
an absolute time scale and slow periodic oscillations around the equilibrium are 
seen in the simulations which could be overdamped in a viscous medium like water. 
These issues are addressed in a forthcoming paper [26], which also contains more 
detailed information about the algorithms used here. 
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